
High Power Laser Science and Engineering
http://journals.cambridge.org/HPL

Additional services for High Power Laser Science and Engineering:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Theory of light sail acceleration by intense lasers: an overview

Andrea Macchi

High Power Laser Science and Engineering / Volume 2 / May 2014 / e10
DOI: 10.1017/hpl.2014.13, Published online: 30 April 2014

Link to this article: http://journals.cambridge.org/abstract_S2095471914000139

How to cite this article:
Andrea Macchi (2014). Theory of light sail acceleration by intense lasers: an overview . High Power Laser Science and
Engineering, 2, e10 doi:10.1017/hpl.2014.13

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/HPL, IP address: 210.72.9.237 on 30 May 2014



High Power Laser Science and Engineering, (2014), Vol. 2, e10, 6 pages.
© Author(s) 2014. The online version of this article is published within an Open Access environment subject to the conditions of the
Creative Commons Attribution licence <http://creativecommons.org/licences/by/3.0>.
doi:10.1017/hpl.2014.13

Theory of light sail acceleration by intense lasers:
an overview

Andrea Macchi
National Institute of Optics, National Research Council (CNR/INO), Research Unit ‘Adriano Gozzini’,
Department of Physics ‘Enrico Fermi’, University of Pisa, largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

(Received 1 January 2014; revised 18 February 2014; accepted 4 April 2014)

Abstract
A short overview of the theory of acceleration of thin foils driven by the radiation pressure of superintense lasers is
presented. A simple criterion for radiation pressure dominance at intensities around 5× 1020 W cm−2 is given, and the
possibility for fast energy gain in the relativistic regime is discussed.
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1. Introduction

It has been known since the discovery of Maxwell’s equa-
tions that light, i.e., electromagnetic (EM) radiation, exerts a
pressure on a reflecting object, and thus may accelerate it. In
1925, Zander[1] suggested exploiting the radiation pressure
of the Sun for space travel using light sails, i.e., mirrors of
large area and small thickness.

The scattering of an EM wave by a particle also leads to
momentum absorption and acceleration. In 1957, Veksler[2]

suggested that Thomson scattering by a small cluster con-
taining N electrons may accelerate the cluster to high veloc-
ities. The fundamental point of Veksler’s proposal was that
the radiation force on the cluster scaled as N 2, providing an
example of his new principle of coherent acceleration, i.e.,
the use of collective effects to accelerate large amounts of
particles to high energies.

After the invention of the laser, Forward in 1962[3, 4] and
Marx in 1966[5] proposed using an Earth-based laser system
to accelerate a rocket up to relativistic velocities. Marx’s
paper included a relativistic analysis of the motion of a sail,
i.e., a plane perfect mirror, accelerated by radiation pressure,
based on the equations

d(γ V )
dt
= 2
σ0c

I (t − X/c)
1− V/c
1+ V/c

,
dX
dt
= V, (1)

where I = I (t) is the intensity of the laser pulse, σ0 is the
surface mass density of the sail, and γ = (1 − V 2/c2)−1/2.
The concept is sketched in Figure 1. The most interesting
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Figure 1. The light sail concept. The sail is modeled as a perfect mirror of
surface density σ = ρ`, with ρ the mass density and ` the thickness. The
sail is pushed by a plane wave of intensity I and frequency ω. Notice that
the equations of motion for the sail given in (1) and the expression for the
mechanical efficiency may be simply obtained by considering the Doppler
shift of the reflected radiation [ωr = ω(1−β)/(1+β)] and the conservation
of the ‘number of photons’; see, for example, Ref. [6].

result (but also the subject of a long-lasting controversy[7])
was the expression for the mechanicalefficiency η = 2β/(1+
β) (with β = V/c), which reaches 100% in the relativistic
limit β → 1. Equations (1), hereafter referred to as the
light sail (LS) equations, have the same form as for the
motion of the Thomson scattering particle[8], evidencing the
connection with Veksler’s proposed mechanism.

In 2004, using particle-in-cell (PIC) simulations of the
acceleration of a thin plasma foil by a laser pulse with
intensity I > 1023 W cm−2, Esirkepov et al.[9] showed
that the motion of the foil was also well fitted by the
above-mentioned equation, giving evidence that the foil was
driven from radiation pressure. The scaling of the LS
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equations to foreseeable laser and target parameters showed
the possibility of reaching the relativistic velocity of the
foil, corresponding to an energy per nucleon above the GeV
barrier. The coherent motion of the foil also implied an
inherent mono-energetic spectrum, which would be crucial
for most applications. Such features have then stimulated a
strong interest in LS acceleration.

In this paper, we give a brief overview of the research
on LS acceleration in the past decade, mostly focusing on
theoretical aspects and open issues. A simple criterion
for radiation pressure dominance at intensities around 5 ×
1020 W cm−2 is given, and the possibility for fast energy
gain in the relativistic regime is pointed out. A more
comprehensive presentation of experimental and simulation
results may be found in recent review papers on laser-driven
ion acceleration[10–13].

2. One-dimensional dynamics

For an arbitrary pulse profile I (t), the final value of γ is
obtained from Equations (1) as

γ∞ ≡ γ (t =∞)= 1+ F2

2(F + 1)
, F = 2

σc2

∫ ∞
0

I (t ′)dt ′.
(2)

For a flat-top intensity profile, i.e., a constant value of I
between t = 0 and τL , Equations (1) can be solved exactly.
Here, we just give the limiting cases of β � 1 and β → 1,
for which the integration is straightforward (notice that, for
β ' 1, (1+ β)/(1− β) ' 4γ 2):

γ (t) =
{

1+ [1− exp(−2Ωt)]2/8 (Ωt � 1)
(3Ωt/4)1/3 (Ωt � 1),

(3)

where Ω = 2I/σ0c2. Equations (2) and (3) may be used
to obtain the acceleration time and length in the laboratory
for a given value of the final energy per nucleon Emax =
m pc2(γ∞ − 1) (notice that it would be incorrect to plug the
pulse duration τL in Equation (3) to obtain Emax).

It is evident that the energy gain is quite fast for β � 1 but
becomes much slower in the relativistic regime as β → 1.
In a realistic multi-dimensional scenario, this is a possible
issue, because of laser pulse diffraction on distances larger
than the Rayleigh length. Fortunately, as discussed below,
the energy gain may be faster in three-dimensional (3D)
geometry thanks to the target rarefaction.

Obviously, the lighter the sail the higher the energy for a
given laser pulse. However, if the foil target is too thin, then
it becomes transparent to the laser pulse, and the radiation
pressure boost drops down. Based on the simple model of
a delta-like foil and purely transverse electron motion[14, 15],
the threshold for transparency due to relativistic effects is
given by

a0 ' ζ , (4)

where a0 = (I/mencc3)1/2, ζ = πσ0/(Zmi ncλ), nc =
πmec2/(e2λ2) = π/(rcλ

2) is the cut-off density, and λ is

the laser wavelength. Despite the very simplified underlying
model, Equation (4) describes fairly well the onset of trans-
parency and the breakdown of LS acceleration observed in
1D simulations[16]. Actually, Equation (4) may be con-
sidered as slightly pessimistic, because, as the foil moves,
the reflectivity increases, due to the decrease of the pulse
frequency in the moving frame[17]. The situation is more
complex for finite-width pulses in multi-dimensional geom-
etry, because the transverse expansion of the foil leads to a
decrease of the surface density σ in time.

The above modeling considers the sail as a neutral rigid
body with electrons comoving with ions. Indeed, charge
separation effects are crucial in the ‘inner’ dynamics of
LS acceleration. Figure 2 shows the initial stages of ion
acceleration. Electrons are pushed into the target by the
secular ponderomotive force per unit volume fp = 〈J× B〉,
where the brackets denote a cycle average. The pondero-
motive force sweeps and piles up the electrons, creating
a charge depletion layer until f p is exactly balanced by
an electrostatic field Ex (this corresponds to the balance
between Prad and the electrostatic pressure on ions; see, for
example, Refs. [16, 17]). In turn, Ex accelerates the ions as
shown in Figure 1. In a first stage, the ions in the layer where
the EM field penetrates are accelerated up to a velocity vi

within a time tc, given by[18]

υi

c
'
(

I
ρc3

)1/2

=
(

Zmenc

Am pne

)1/2

a0,

tc ' 1
ωa0

(
Am p

Zme

)1/2

,

(5)

where ρ is the mass density (for simplicity we assume
non-relativistic motion; see [19] for relativistically corrected
expressions). At t = tc, the accelerated ions have piled up
at the position x = xs ' υi tc. If this position coincides with
the rear surface of the foil, the acceleration cycle may be
repeated, and eventually the sequence of acceleration stages
converges to the motion described by (1)[20].

The correct balance of electrostatic and radiation pressure
shows that only a fraction F ' 1 − a0/ζ of the ions is
accelerated coherently as a sail, even if the motion of the
latter is still described by Equation (1) with σ0 including
the total mass of the foil[16, 17]. During the motion, as
long as the geometry is one dimensional, the electrostatic
pressure on the sail depends only on the total charge behind
the sail, while the radiation pressure decreases by a factor
(1 − β)/(1 + β). Thus, to maintain the pressure balance,
additional ions are progressively trapped in the sail[17, 21].
Applying the pressure balance as in Ref. [16] with the
velocity correction yields the final fraction of accelerated
ions:

F ' 1− a0

ζ

(
1− β∞
1+ β∞

)1/2

, (6)

where β∞ = [(1+F)2−1]/[(1+F)2+1]. This shows that
all ions are eventually accelerated in the relativistic limit.
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Figure 2. The first stage of ion acceleration driven by radiation pressure[18]. The densities of ions (ni ) and electrons (ne) are approximated by step-like
functions. Ions initially in the xd < x < xs layer are accelerated by the charge separation field Ex up to velocity υi at time t = tc .

3. Radiation pressure dominance

Since a thin plasma foil is not a perfect mirror, it is not
trivial that irradiation by intense light should result in LS
acceleration. In most accessible laser–plasma interaction
conditions, strong heating of electrons occurs, and the result-
ing kinetic pressure exceeds the radiation pressure; in such
a situation, the plasma foil expands and the resulting ion
energy spectrum is very different from the LS case. The
situation is somewhat reminiscent of the Crookes radiometer
or light mill, where the vanes are white (reflecting) on one
side and black (absorbing) on the other side: the mill rotates
in the direction opposite to what would be expected from
radiation pressure being higher on the white side than on
the black side, because the effects of heating and thermal
pressure dominate.

To find the conditions in which the radiation pressure P rad
will dominate the acceleration, let us briefly recall the heat-
ing dynamics of electrons. At normal incidence, electrons
are driven in the direction perpendicular to the target surface
by the v × B force, which for linear polarization (LP) has
an oscillating term at 2ω (where ω is the laser frequency)
in addition to the secular ponderomotive force. Heating
of electrons occurs via oscillations across the laser–plasma
interface driven by the oscillating term, which vanishes for
circular polarization (CP)[18]. The use of CP pulses has then
been proposed by several authors[22–24] to obtain an efficient
LS regime at ‘any’ intensity. Detailed 3D simulations in
the relativistic regime[25] also showed that for CP pulses
higher energies and better collimation of the ion beam are
obtained with respect to LP pulses. Experiments performed
so far, however, have shown a limited impact of the use
of CP[26–29] and non-LS effects such as species separation
in the spectrum[28–30] (in the ideal LS regime, all species
move at the same velocity; thus the energy per nucleon is
independent on the mass number). These data suggest that
tight focusing of the laser pulse and, possibly, imperfect
conversion to CP may prevent efficient LS operation, at
least in the intensity regime investigated so far, i.e., I '
(2× 1018 ÷ 2× 1021) W cm−2.

In view of future experiments at higher intensities and of
possible technical difficulties for producing ultraintense CP
pulses, it appears important to discuss possible conditions

for radiation pressure dominance also for LP, when electron
heating is important. Heuristically, the transfer of energy to
ions via P rad can be efficient if it is ‘faster’ than the heating
of electrons, which occurs on a laser halfcycle. Esirkepov
et al.[9] suggested that ions should become promptly rela-
tivistic, i.e., reaching a velocity close to c within one cycle,
so that they would ‘stick’ to electrons. To estimate the
corresponding laser intensity for such a regime, let us assume
υi ' c/2 in Equation (5): this gives

a0 ' 30
(

ne

nc

)1/2

, (7)

which for ne/nc ' 100 gives Iλ2 > 1023 W cm−2 µm2,
which is the typical intensity of the simulations in Ref. [9].
These values are not currently available, although they may
be reached in the laboratory within the next decade.

Here, we propose a different condition, which leads to a
more accessible intensity threshold. The above-defined ion
acceleration time tc may be taken as the relevant temporal
scale for energy transfer to ions. For electrons, acceleration
occurs on a laser halfcycle being driven by the oscillating
force at 2ω. Thus we suggest tc < π/ω as the condition for
energy transfer to ions being more efficient than to electrons.
This leads to the threshold for the laser amplitude

a0 >
1
π

(
Am p

Zme

)1/2

' 19, (8)

which is equivalent to Iλ2 > 5 × 1020 W cm−2 µm2,
independently of the plasma density. This estimate is in
qualitative agreement with LS signatures being observed
in current experiments at similar intensities[28]. A slightly
greater intensity threshold of 1021 W cm−2 µm2 has been
suggested by Qiao et al.[31] on a different basis, i.e., by
comparing the ion energy gain due to the radiation pressure
push with that in the fast electron sheath.

4. Fast gain regimes: ‘unlimited’ acceleration

In a realistic situation, the laser pulse has a finite width,
and it drives a cocoon deformation and transverse expansion
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of the target. This unavoidable effect may lead to early
breakthrough of the laser pulse and termination of the LS
stage; thus the use of a smooth transverse profile to keep a
nearly plane geometry was suggested by several simulation
studies. In contrast, Bulanov et al.[32] suggested that the
decrease of target density due to transverse expansion may
lead, in proper conditions, to acceleration up to higher
energies than in the planar case, at the expense of the number
of accelerated ions. This has been named the ‘unlimited’
acceleration regime.

In the following, we give a brief and simplified account
of the detailed theory developed by Bulanov et al.[33].
The basic modification of Equation (1) for the longitudinal
motion of the sail is that the surface density now depends on
time due to the transverse expansion,

σ = σ(t) = σ(0)
ΛD−1(t)

, (9)

whereΛ(t) describes the dilatation of the transverse position
of a fluid element of the sail, i.e., r⊥(t) = Λ(t)r⊥(0), and D
is the dimensionality of the system; D = 1 corresponds to
planar geometry (constant σ ), D = 2 to two-dimensional
Cartesian geometry, and D = 3 to three-dimensional ge-
ometry with cylindrical symmetry. Now, it is assumed that
for a given element the motion is ballistic after an initial
kick by the laser pulse delivering a transverse momentum
p⊥ = mi$0r⊥(0), i.e., proportional to the initial position.
This relation might be justified by observing that such kick
comes from the transverse ponderomotive force, which is
proportional to the gradient of the intensity and thus would
be a linear function of position for a parabolic profile. It
is further assumed that p⊥ � p‖, with p‖ the longitudinal
momentum. The transverse velocity thus decreases as a
result of the increasing longitudinal momentum. This leads
to the equation for Λ,

dΛ
dt
= ṙ⊥(t)

r⊥(0)
= $0

γ (t)
, γ (t) ' (p2

‖ + m2
i c2)1/2, (10)

with the coupled equation for p‖ = γβ‖:
d(γβ‖)

dt
= 2I
σ0c2Λ

D−1(t)
1− β‖
1+ β‖ . (11)

For further simplification, we consider the asymptotic ultra-
relativistic limit, in which β‖→ 1 and (1− β‖)/(1+ β‖) '
(2γ )−2. In this limit, we find a solution

γ =
(

t
τk

)k

, k = D
D + 2

, (12)

with the time constants given for D = 1, 2, 3 by

τ1/3 =
(

3
4Ω

)
, τ2/4 =

(
1

Ω$0

)1/2

,

τ3/5 =
(

48
125Ω$ 2

0

)1/3

.

(13)

Fast energy gain in this regime thus depends on the initial
conditions via the parameter $0. Assuming the initial trans-
verse kick to be of the same order as the longitudinal one,
$0 ' Ω may be assumed for a quick estimate. For a given
temporal profile I (t), the final energy and surface density
along the axis may be obtained by integrating Equations (10)
and (11) with respect to the proper time t ′ = t − X/c, with
dt ′ = (1 − β‖)dt . Bulanov et al.[33] also discuss ‘optimal’
pulse profiles to maximize the acceleration; heuristically,
since the ‘unlimited’ mechanism is actually limited by the
onset of transparency, one argues that the decrease of the
density may be matched with the decrease of the pulse
frequency in the sail frame to keep a constant reflectivity.

5. 3D simulations

The above-outlined theory shows that, differently from other
acceleration mechanisms[34, 35], the energy gain may be
higher in a realistic 3D geometry that with respect to a
1D plane case. Confirmation of this theory in numerical
experiments thus requires fully 3D large-scale simulations,
which are feasible on the most powerful present-day parallel
supercomputers.

Simulations by Tamburini et al.[25] (Figure 3(a)) have
given a first evidence of the energy enhancement in fully 3D
simulations. These simulations also indicated a baseline for
LS operation in the relativistic regime, showing that the use
of CP leads to higher energies and a more collimated beam
with respect to the LP case, and also to negligible radiation
friction effects. To evaluate the energy gain at the end of
the acceleration stage, larger computational resources have
been necessary to extend the simulation time by four times.
In such simulations, the temporal dependence of maximum
ion energy is in good agreement with the∼t3/5 scaling given
by Equation (12), as shown in Figure 3(b))[12]. Ultimately,
the acceleration is stopped by the onset of transparency.
These simulations have been performed on the FERMI
supercomputer at CINECA, Italy.

6. Conclusions and perspectives

The laser-driven light sail concept, which was first studied
as a visionary approach to interstellar travel, currently rep-
resents an implementation of Veksler’s coherent accelera-
tion paradigm and a possible route towards a laser–plasma
accelerator. Experiments are just entering the regime of
intensities exceeding 5 × 1020 W cm−2 where, according
to our discussion, the radiation pressure push is expected to
be the dominant acceleration mechanism. Recent progress
in both achieving extremely high-contrast pulses and man-
ufacturing ultrathin targets has been crucial for light sail
experiments[26–30], and results such as the observation of
the fast scaling of ion energy in the non-relativistic limit[28]
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Figure 3. 3D particle-in-cell simulations of thin foil acceleration. (a) Space and energy distribution of ions[25] (reproduced by permission of APS) at
t = 20T from the acceleration start (T = 2π/ω laser period). (b) Maximum ion energy versus time[12] (reproduced by permission of IOP Publishing). Both
simulations have been performed for a 9λ× (10λ)2 pulse (FWHM values) with peak amplitude a0 = 198 and circular polarization, and a hydrogen plasma
foil with surface density σ = 64m pncλ, so that a0 ' ζ . See the references for details.

are promising. However, several open issues are apparent,
such as achieving mono-energetic spectra, and the effect of
parameters such as the laser pulse focusing and duration still
needs to be completely understood and optimized.

With the availability of next-generation lasers at extreme
intensities, success of the light sail approach in producing
relativistic ions will depend on the possibility of achieving
and controlling the so-called ‘unlimited’ regime based on a
suitable (and possibly self-regulated) transverse expansion
of the target. On this route one expects technical challenges,
such as clean circular polarization for ultraintense pulses, as
well as other possible issues not considered in this paper,
such as the target stability.
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